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Abstract—This paper presents self-motion behaviors of 3-DOF 

planar robotic arm when it tracks a predefined end-effector path. 

In this case, the self-motion contributes to geometry of a motion 

envelope.  The Bezier curve degree fifth is utilized as the tracked 

path. Different geometry of the motion envelope can be used to 

avoid collision while it also follows the tracked path accurately.  A 

theta global as closed form solution of 3-DOF planar robot is 

modeled as a polynomial degree sixth. A Genetic Algorithm (GA) 

as one of meta-heuristic optimizations is used to find optimal 

solution of the path planning approach. An effect of initial and 

final joint angles in the robotic arm motion is also investigated.  

The theta global trajectories are also possible to contain an 

imaginary number. The imaginary number of the theta global 

trajectories can be used as a sign that position errors are present 

and the trajectories need to be repaired using the self-motion 

analysis.  

 
Keywords—Self-motion, genetic algorithm, path planning, 

redundant manipulator. 

I. INTRODUCTION 

n arm robot is very fascinating tool to be utilized to 

accomplish a job which contains manipulation. The 

method to generate trajectories that exhibit zero error is the 

main goal of the continuous path planning. Especially for 

kinematically redundant robot, there are many joint angle 

trajectories available for one instantaneous point so that the 

redundant manipulator has the self-motion capability. The self-

motion has benefits in avoiding collision, achieving n-

connectivity as well as avoiding singularity [1]. 

 Tracking the predefined path is the problem of constructing 

the connected trajectories from the initial point to the final point 

with the end-effector path as the constraint. Regarding the 

existence of many available solutions for one instantaneous 

point, constructing the connected trajectories is non-trivial 

problem.  
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Self-motion manifold in robotics firstly introduces and 

investigates by [3].  Since then, the self-motion become one of 

the most interesting research topics in the robotic arm. 

Numerous papers in the self-motion have been presented [1-8]. 

Machmudah et al [9] proposed an interval analysis of the self-

motion to generate the joint angle trajectories and employed 

meta-heuristic optimizations to find the optimal solution. Lin et 

al [10] proposed the path planning algorithm which consisted 

of the Swinging Search and the Crawling Control. In Swinging 

Search part, a collision-free configuration was computed by 

applying reinforcement learning to self-motion. The self-

motion takes global solution of IK rather than local solution [2]. 

Thus, the self-motion cannot be separated from the IK problem. 

For tracking the curve, the IK solution is the most important 

thing to be considered since it is necessary to achieve the end-

effector configuration. there are many research papers have 

been published to propose the IK solution analytically as well 

as numerically [11-15].  

Different with previous researches where they focused mostly 

on the self-motion behavior for one instantaneous end-effector 

configuration, this research investigates the self-motion 

behavior when the redundant manipulator tracks the entire 

tracked curve. The tracked path can be considered as the 

trajectories composed from set of fixed end-effector 

configurations. For redundant robot, there are infinite Inverse 

Kinematics (IK) solutions available for one end-effector 

configuration [2]. Thus, the motion analysis of the redundant 

robot can be very complex. The problem become how to choose 

the trajectories among many possible solutions.  

This paper models the problem of the continuous motion of 

the redundant 3-DOF planar series manipulator by considering 

the theta global trajectories as polynomial function. For 3-DOF 

planar robot, the theta global variable, which is the summation 

of the first, second, and third joint angles, contributes to the self-

motion of one instantaneous point. When the theta global is 

modeled as the continuous function, the global behavior of the 

arm robot motion can be visualized more clearly by the motion 
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envelope constructed during tracking the entire path. Different 

theta global for one end-effector position represents different 

point in the self-motion manifold. For continuous path 

planning, the trajectory generator needs to create the trajectories 

that are connected while it also tracks the path. Using 

polynomial function as the theta global trajectories, the joint 

angle trajectories will be guaranteed connected following the 

polynomial function. The envelope of motion is used to 

visualize these behaviors.  

II. SELF-MOTION TO REPAIR UNFEASIBLE TRAJECTORIES 

The self-motion capability of kinematically redundant 

manipulator is one of the most interesting behaviors of the arm 

robot where it can be used to repair the unfeasible trajectories. 

The self-motion has a benefit in repairing the unfeasible 

trajectories regarding the collision, the singularity, as well as 

the connectivity. The self-motion is the case when the position 

of the end-effector is fixed and the positions of the joint angles 

are moved. For 3-DOF planar robot, different value of the theta 

global for the same end-effector position represents the self-

motion contribution in the manipulator motion. Different theta 

global trajectories means that the postures changes or motion 

envelope is also different. Instead of analyzing the self-motion 

for just one instantaneous point, this paper considers the self-

motion when the manipulator tracks the entire tracked curve. 

Since the end-effector path does not change, all different 

trajectories are due to the contribution of the self-motion.  

For the redundant manipulator, there are many possible 

configurations for one instantaneous end-effector position. 

When the obstacle is present, besides the collision-free 

requirement, the chosen trajectories should have n-connectivity 

and smoothness. Figure 1a illustrates the example of the wrong 

trajectories  which correlate with the wrong postures, Fig. 1b,  

of the link configurations. During the motion, the posture of the 

link configuration is changed. Kinematically redundant 

manipulator has capability of the self-motion that give the 

advantage in avoiding collision and finding the correct posture; 

however, since there are many possible configurations for one 

end-effector position, finding the feasible trajectories is non-

trivial problem. The posture in Fig. 1b is possible to be 

reconstructed because the redundant manipulator has the self-

motion capability. Figure 2 is the example of the feasible 

motion where the joint angle trajectories. Figure 2b is very 

smooth joint angle trajectories and the postures of manipulator, 

as shown in Fig 2b, are also proportional. 
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Figure 1.  (a). Joint angle trajectories (b). wrong posture of (a) 
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Figure 2.  Repair trajectories by self-motion (a) Joint angle trajectories (b). 

proper posture of (a) 

III. MODIFICATION OF IK SOLUTION OF 3-DOF PLANAR ROBOT: 

THETA GLOBAL AS POLYNOMIAL FUNCTION 

3-DOF planar robot has the closed form solution using 

algebra method [16]. There is the variable utilized, namely the 

theta global.   

                               𝜃𝑔 = −𝜃1 − 𝜃2 + 𝜃3                              (1) 

   𝑤𝑥 = 𝑃𝑥 − 𝑙1 𝑐𝑜𝑠 𝜃𝑔   𝑤𝑦 = 𝑃𝑦 − 𝑙1 𝑠𝑖𝑛 𝜃𝑔           () 

where Px, Py, 𝜃𝑔, 𝜃1,𝜃2, and 𝜃3are the position of end-effector 

in Cartesian coordinate, the theta global, the first, second, and 

third joint angles, respectively. 

The cosine and sine of second joint angle can be obtained by 

the following  

                               𝐶2 =
(𝑤𝑥

2+𝑤𝑦
2−𝑙1

2−𝑙2
2)

2𝑙1𝑙2
                           (3) 

0 0.2 0.4 0.6 0.8 1

-4

-2

0

2

4

linear time-scale

jo
in

t 
a
n
g
le

 (
ra

d
)

 

 

1st link

2nd link

3rd link

-60 -40 -20 0 20 40 60 80
-60

-40

-20

0

20

40

60

x(cm)

y(cm)

A(-20 -30)

B (40 50)

F

G

0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

linear time-scale
jo

in
t 
a

n
g

le
 (

ra
d

)

 

 

1
st

 link

2
nd

 link

3
rd

 link

-60 -40 -20 0 20 40 60 80
-40

-20

0

20

40

60

x(cm)

y(cm) y(cm) end-effector

trajectories

A(-20 -30)

B (40 50)



Journal of Advanced Technology and Multidiscipline (JATM) 

Vol. 01, No. 01, 2022, pp. 1-9 

3 

                        𝑠2 = √1 − 𝑐2
2                          ()   

The second joint angle can be determined by inverse tangent 

as follow 

                                𝜃2 = 𝑎 𝑡𝑎𝑛 2 (𝑠21, 𝑐21)       () 

The first joint angle can be obtained as follows 

                                 𝛥 = 𝑤𝑥
2 + 𝑤𝑦

2 () 

                     𝑠1 =
(𝑙1+𝑙2𝑐2)𝑤𝑦−(𝑙2𝑠2𝑤𝑥)

𝛥
            () 

                          𝑐1 =
(𝑙1+𝑙2𝑐2)𝑤𝑥+(𝑙2𝑠2𝑤𝑦)

𝛥
              () 

                              𝜃1 = 𝑎 𝑡𝑎𝑛 2 (𝑠1, 𝑐1)                         () 

where s1 and c1 are the sine and cosine of first joint angle, 

respectively. 

Finally, the third joint angle can be calculated from the 

relation of the theta global, the first joint angle, and the second 

joint angle as follows 

                                      𝜃3 = 𝜃𝑔 − 𝜃1 − 𝜃2                    () 

A. Theta Global as Polynomial function 

To perform the manipulation, the arm robot needs to move 

from the initial configuration to the final configuration. The 

continuous path where the end-effector should track the specific 

path needs to solve the inverse kinematic to construct the joint 

angle trajectories.  3-DOF planar robot is redundant robot 

which kinematically there will be many possible solutions for 

of one instantaneous end-effector position. For the whole 

motion, the joint angle trajectories should be feasible. In case 

of obstacle environment, besides tracking the path, it also needs 

to avoid collision as well as have n-connectivity.  

This research will investigate the characteristic of the joint 

angle trajectories when the theta global as the closed form 

solution of 3-DOF planar robot is modeled as the continuous 

function of polynomial degree sixth.  

The joint angle as function of time can be expressed as 

composition function of joint angle profile and linear time-scale 

as follows 

                                      𝜃𝑔(𝑡) = 𝜃𝑔(𝑟) ∘ 𝑟(𝑡)                 () 

                                          𝑟(𝑡) =
𝑡

𝑇
                                   () 

where 𝜃𝑔(𝑡), 𝜃𝑔(𝑟), 𝑟(𝑡) , t, and T are the theta global function 

of time, the global profile, linear time-scale, the time, and the 

total travelling time, respectively.  

Using polynomial function degree sixth as theta global 

trajectories, the theta global profile can be expressed in the 

following 

 𝜃𝑔(𝑟) = 𝑎6𝑔
𝑟6 + 𝑎5𝑔

𝑟5 + 𝑎4𝑔
𝑟4 + 𝑎3𝑔

𝑟3 + 𝑎2𝑔𝑟2 + 𝑎1𝑔𝑟 +

𝑎0𝑔                        ()  

where r is linear time-scale and ang is the nth polynomial 

coefficient of theta global.  

Utilizing the chain rule, the velocity and acceleration can be 

derived from (3) as follows 

          𝜃̇(𝑡) = 𝜃̇(𝑟)
1

𝑇
                               () 

      𝜃̈(𝑡) = 𝜃̈(𝑟)
1

𝑇2                              () 

This research uses the boundary condition that the initial/ final 

velocities of the theta global and the initial/ final accelerations 

of the theta global are zero.  

Considering all boundary conditions into Eqs. (3, 4, 5), the 

following equations are obtained  

  𝑎𝑜𝑔 = 𝜃𝑖𝑔   𝑎1𝑔 = 𝑎2𝑔 = 0 

 𝑎5𝑔 = −3𝑎6𝑔 − 6𝜃𝑖𝑔 + 6𝜃𝑓𝑔                     () 

 𝑎4𝑔 = 0.5(−9𝑎6𝑔 − 5𝑎5𝑔)                     () 

      𝑎3𝑔 = 𝜃𝑓𝑔 − 𝜃𝑖𝑔 − 𝑎6𝑔 − 𝑎5𝑔 − 𝑎4𝑔           () 

where ang, 𝜃𝑛𝑔, 𝜃𝑖𝑔 and 𝜃𝑓𝑔are nth coefficient of theta global, 

theta global trajectories for nth link, and initial theta global and 

final theta global, respectively. 

The theta global equation in (14) is reduced in the following: 

          𝜃𝑔 = 𝑎6𝑔
𝑟6 + 𝑎5𝑔

𝑟5 + 𝑎4𝑔
𝑟4 + 𝑎3𝑔

𝑟3 + 𝑎0𝑔    () 

There is one unknown variable in this case, the sixth 

polynomial joint angle coefficient, a6g. 

B. General Pattern of sixth polynomial joint angle trajectories 

This paper model the theta global trajectories as the 

polynomial degree sixth. It is very essential to obtain the pattern 

of the sixth-degree polynomial trajectories that creates a motion 

collaboration among the links during the manipulator motion. 

The pattern of the joint angle trajectories can be predicted 

from the first and second derivatives of the joint angle 

polynomial function. Mathematically, they determine the 

location of the turning point as well as the local 

maximum/minimum point.  

From the boundary conditions, the velocity at initial point, r 

= 0,  and final point, r = 1, that are equal to zero mean that 0 

and 1 are the roots of the first derivative of joint angle path,  

as follows 
𝑑𝜃

𝑑𝑟
= 0                                                   (21) 

6𝑎6𝑔𝑟5 + 5𝑎5𝑔𝑟4 + 4𝑎4𝑔𝑟3 + 3𝑎3𝑔
2 = 0 

(𝑟 − 1)(𝑟 − 0)(𝑟 − 𝑟𝑎)(𝑟 − 𝑟𝑏)(𝑟 − 𝑟𝑐) = 0             (22) 

Other three roots, ra, rb, rc can be determined from: 

(𝑟 − 1)(𝑟 − 0) (
6𝑎6𝑔𝑟5+5𝑎5𝑔𝑟4+4𝑎4𝑔𝑟3+3𝑎3𝑔𝑟2

(𝑟−1)(𝑟−0)
) = 0      (23) 

From (22) and (23), the following can be obtained: 

(𝑟 − 𝑟𝑎)(𝑟 − 𝑟𝑏)(𝑟 − 𝑟𝑐) = (
6𝑎6𝑔𝑟5+5𝑎5𝑔𝑟4+4𝑎4𝑔𝑟3+3𝑎3𝑔𝑟2

(𝑟−1)(𝑟−0)
)    (24) 
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This three roots, ra, rb, rc, will be the roots of cubic equation. 

It has three possible values; three real numbers, multiple roots, 

or one real number and two complex numbers. 

In this case, since 0 and 1 are the roots of the velocity equation, 

so there is possibility that these number are the part of the other 

three roots. Firstly, this paper will investigate this possibility.   

Considering 0 and 1 as the twin roots, (23) can be expressed as 

follows: 

(𝑟 − 1)(𝑟 − 0)(𝑟 − 1)(𝑟 − 0) (
6𝑎6𝑔𝑟5+5𝑎5𝑔𝑟4+4𝑎4𝑔𝑟3+3𝑎3𝑔𝑟2

(𝑟−1)2(𝑟−0)2
) = 0                                       

Solving the equation of the last root:  

(
𝟔𝒂𝟔𝒈𝒓𝟓+𝟓𝒂𝟓𝒈𝒓𝟒+𝟒𝒂𝟒𝒈𝒓𝟑+𝟑𝒂𝟑𝒈𝒓𝟐

(𝒓−𝟏)𝟐(𝒓−𝟎)𝟐
) = (𝟔𝒂𝟔𝒈𝒓 + (𝟓𝒂𝟓𝒈 + 𝟏𝟐𝒂𝟔𝒈)) +

𝒓𝟑(𝟒𝒂𝟒𝒈+𝟏𝟖𝒂𝟔𝒈+𝟏𝟎𝒂𝟓𝒈)+𝒓𝟐(𝟑𝒂𝟑𝒈−𝟓𝒂𝟓𝒈−𝟏𝟐𝒂𝟔𝒈)

𝒓𝟒−𝟐𝒓𝟑+𝒓𝟐              (25) 

There are residue parts. Return back to Eqs (15, 16), for final 

boundary conditions, at r =1, the velocity and acceleration are 

zero, the equations are as follows: 

𝜃̇(1) = 6𝑎6𝑔 + 5𝑎5𝑔 + 4𝑎4𝑔 + 3𝑎3𝑔 = 0                         (26) 

𝜃̈(1) = 30𝑎6𝑔 + 20𝑎5𝑔 + 12𝑎4𝑔 + 6𝑎3𝑔 = 0                    (27) 

Eliminate Eqs (26, 27) in the following: 

 (27)      →   30𝑎6𝑔 + 20𝑎5𝑔 + 12𝑎4𝑔 + 6𝑎3𝑔 = 0               

(26) x 2  → 12𝑎6𝑔 + 10𝑎5𝑔 + 8𝑎4𝑔 + 6𝑎3𝑔 = 0 

   18𝑎6𝑔 + 10𝑎5𝑔 + 4𝑎4𝑔 = 0                             (28)                             

(26) x 3 →   18𝑎6𝑔 + 15𝑎5𝑔 + 12𝑎4𝑔 + 9𝑎3𝑔 = 0               

(27)         → 30𝑎6𝑔 + 20𝑎5𝑔 + 12𝑎4𝑔 + 6𝑎3𝑔 = 0 

                    −12𝑎6𝑔 − 5𝑎5𝑔 − 3𝑎3𝑔 = 0                         (29) 

The Equations (28, 29) are the coefficient of r3 and r2 of the 

residue part of  (25) that are equal to zero, so that the residual 

part will be equal to zero also. 

 Since this agrees with all equation in the sixth polynomial 

joint angle trajectories, thus it proves that 0 and 1 are part of the 

other three roots. From (25), another root is 6
5− a5g – 2a6g. 

So that, we can write (21) into the following: 

6𝑎6𝑔𝑟5 + 5𝑎5𝑔𝑟4 + 4𝑎4𝑔𝑟3 + 3𝑎3𝑔𝑟2 = 0                                        

 (𝑟 − 1)2(𝑟 − 0)2 (6𝑎6𝑔𝑟 + (5𝑎5𝑔 + 12𝑎6𝑔)) = 0        (30) 

From this result, the roots of the first derivative of θ are 

r1 = 0 → twin roots, turning point 

r2 = 1 → twin roots, turning point 

r3= -5a5g – 12a6g  → turning point 

These roots give the information of the turning point and the 

local maximum/minimum point. For 1r0  , these three 

roots are three possible locations of optimum points. The exact 

local optimum position depends on the value of a6g. For 

example, if 𝜃(𝑟1) ≥ 𝜃(𝑟2) ≥ 𝜃(𝑟3), then 𝜃(𝑟1) is the maximum 

point and 𝜃(𝑟3) is the minimum point. 

The location of the third optimum point depends on the a6g. 

Assume that there is no restriction of a6g value, for a6g 

approaching infinity the value of this optimum point is as 

follows 

( )( ) 5.0a12a5ra6lim 656
a6

=++
→

                     (31) 

The acceleration conditions where they are chosen to be zero 

at initial point and final point give the characteristic of the 

inflection point of the joint angle graph. It determines the roots 

of the second derivative of the joint angle as follows: 

𝜃̈(𝑟) = 30𝑎6𝑔𝑟4 + 20𝑎5𝑔𝑟3 + 12𝑎4𝑔𝑟2 + 6𝑎3𝑔𝑟 

= 15𝑎6𝑔𝑟4 + 10𝑎5𝑔𝑟3 + 6𝑎4𝑔𝑟2 + 3𝑎3𝑔𝑟 = 0      (32) 

Since the acceleration of the initial point, r=0, and the final 

point, r=1, are zero, it means that 0 and 1 are two of the roots of 

the second derivative of joint angle path, θ.  

(𝑟 − 1)(𝑟 − 0) (
15𝑎6𝑔𝑟4+10𝑎5𝑔𝑟3+6𝑎4𝑔𝑟2+3𝑎3𝑔𝑟

(𝑟−1)(𝑟−0)
)=0 

(𝑟 − 1)(𝑟 − 0) (15𝑎6𝑔𝑟2 + 𝑟(10𝑎5𝑔 + 15𝑎6𝑔) + (6𝑎4𝑔 + 10𝑎5𝑔 +

15𝑎6𝑔)) = 0                                     (33) 

Thus, four possible inflection points are: 

𝑟1 = 1 

𝑟2 = 0 

𝑟3,4 =
−(10𝑎5𝑔+15𝑎6𝑔)±√(10𝑎5𝑔+15𝑎6𝑔)

2
−4(15𝑎6𝑔)(6𝑎4𝑔+10𝑎5𝑔+15𝑎6𝑔)

30𝑎6𝑔
     ( 34) 

The value of third and fourth inflection points depends on the 

value of a6g. For very large a6g, the location of these roots can 

be determined by calculating the limits when a6k approaching 

infinity as follows 

𝑙𝑖𝑚
𝑎6𝑔→∞

−(10𝑎5𝑔+15𝑎6𝑔)+√(10𝑎5𝑔+15𝑎6𝑔)
2

−4(15𝑎6𝑔)(6𝑎4𝑔+10𝑎5𝑔+15𝑎6𝑔)

30𝑎6𝑔
=

             0.7236                 

𝑙𝑖𝑚
𝑎6𝑔→∞

−(10𝑎5𝑔+15𝑎6𝑔)−√(10𝑎5𝑔+15𝑎6𝑔)
2

−4(15𝑎6𝑔)(6𝑎4𝑔+10𝑎5𝑔+15𝑎6𝑔)

30𝑎6𝑔
=

              0.2764               

According to these results, 0 and 1 are the turning point as 

well as the inflection point. Following the entire characteristics 

of sixth degree polynomial joint angle path presented above, the 

pattern of the joint angle trajectories can be plotted as illustrated 

in Fig 3.  

 

 

 

 

 

 

 

 

 

Figure 3.  Polynomial degree sixth profiles of theta global 

IV. GENETIC ALGORITHM 

A. Objective functions 

The objective function is to minimize the joint angle traveling 

distance of theta global while satisfying all constraints.  

The joint angle traveling distance can be formulated as 

follows 

                     𝑓𝜃 = ∫ √1 + (
𝑑𝜃𝑔(𝑟)

𝑑𝑟
)

2

𝑑𝑟
1

0
                       (35) 

where 𝜃𝑔(𝑟) is the theta global and r is the linear time-scale, 

respectively. 
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The interesting of this method is the root of (4). It should be 

noted that the imaginary number is also the possible solution of 

this root equation. Thus, the following constraint containing the 

requirement that all s2 are real number should be considered 

                   √1 − 𝑐2
2 ∈ 𝑅                                () 

For finding the theta global as continuous function at obstacle 

environment the constraints are the avoiding collision and (35) 

while for the self-motion at obstacle-free environment, the 

constraint is (35). 

B. Genetic algorithm  

This paper employs the real code GA. In the computational 

process, the GA is blind where it only requires to code the 

unknown variables and the analysis individual fitness value 

[17]. Other search methods require an additional information to 

work properly. For example, information of derivatives is 

necessary for a gradient technique.  

There are three main operators in the GA: reproduction, 

crossover, and mutation. Figure 4 illustrates the GA procedure. 

A crossover is a process of randomly picking one or more 

individual as parents and swapping segments of the parents. To 

achieve genetic diversity from one generation of a population, 

the mutation procedure is implemented. The mutation changes 

the values of chromosomes to improve the quality of new 

offspring. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Genetic Algorithm  

 

V. RESULTS AND DISCUSSIONS 

A simulation in MATLAB has been done, by coding in m file. 

3-DOF planar robot has the lengths 30cm, 30cm, and 20 cm for 

first, second, and third links, respectively. The hypermutation 

GA is used, with 0.4 as the mutation rate. It used 20 individuals 

in the population, 100 generations, and 0.5 as a selection rate. 

The interval of the searching area for sixth polynomial 

coefficient is −200 ≤ a6g ≤ 200. 

There are two Bezier curves degree fifth utilized as the 

tracked curve as illustrated in Fig 5. Detail of these tracked 

curves can be seen in Table 1.  
Table 1. Bezier curve tracked path control points 

Case B0 B1 B2 B3 B4 B5 

I (40,-10) (70,50) (20,50) (20,-10) (38,54) (60,-10) 

II (60.0) (30,10) (120,20) (10,30) (60,34) (60,40) 

 

 

(a)                                                (b) 

 

 

 

 

 

 

 

Figure 5.  Fifth Bezier tracked path (a) case I (b) case II 

A. Case I 

First control point, B0, and fifth control point, B5, have many 

possible joint angle compositions to configure them regarding 

the self-motion capability. The initial and final joint angles are 

chosen as in Table 2.  

 
Table 2. Bezier curve tracked path control points 

Case B0 B1 B2 B3 B4 B5 

I (40,-10) (70,50) (20,50) (20,-10) (38,54) (60,-10) 

II (60.0) (30,10) (120,20) (10,30) (60,34) (60,40) 
 

Table 3. Initial and final joint angles of case I 

 
1  (rad) 

2 (rad) 
3  (rad) 

initial -1.6551 2.3765 -0.717367 

final -1.06 1.6252 -0.56002 

 

Figure 6a shows the result of the motion envelope obtained 

by the GA during 100 generations. The joint angles trajectories 

and theta global of this result is shown in Fig. 6b. The 

polynomial coefficient, a6g, obtained is -0.000923.  
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(b) 

 

 

 

 

 

 

 

 

 

 

Figure 6.   (a) Motion envelope (b) joint angle trajectories 

A.1. Other motion envelopes to track predefined curve  

The polynomial coefficient of the theta global function 

contributes to different motion envelope. Figures 7a and 7b 

show the motion envelope and the joint angle trajectories when 

the polynomial coefficient is 75. Figures 8a and 8b show the 

motion envelope and the joint angle trajectories when the 

polynomial coefficient is -75. From those graphs, it shows that 

a6g obtained in Fig. 6 has the minimum joint angle traveling 

distance where the graph of theta global trajectories is minimum 

and the motion envelope is also very compact as compare with 

the graphs of a6g= 75 and a6g= -75.  
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(b) 

 

 

 

 

 

 

 

 

 

Figure 7.  a6g = 75  (a) Motion envelope (b) joint angle trajectories 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b)  

 

 

 

 

 

 

 

 

Figure 8.  Figure 8. a6g = -75  (a) Motion envelope (b) joint angle trajectories 

A.2. Collision-free continuous path planning  

Previous section has shown that different polynomial 

coefficient of theta global contributes to the different motion 

envelope. This behavior is very useful in achieving the 

collision-free motion in the obstacle environment.  Considering 

to place three obstacles in the environment, this section 

employs the hyper mutation GA to find the feasible sixth 

polynomial coefficient in such a way so that the robotic arm is 

able to track the curve while it also avoids the collision. Figure 

9 shows the motion envelope obtained during 100 iterations. 

The polynomial coefficient resulted from this case is -97.7008. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Collision-free motion envelope when obstacles are present 

Machmudah et al [18] has been investigated that choosing the 

proper initial and final joint angle is very important in avoiding 

collision. Yao et al [3] also noticed that the bad start 

configuration in path planning may experience a failure in 

finding the feasible trajectories. In this paper, using the 

approach of the theta global as the continuous function, it also 

has been observed that when the initial and final joint angles are 

not proper, the collision-free path cannot be found. Figure 10a 

shows the example of motion envelope from the wrong initial 

and final configurations. These wrong configurations are [-

0.6186  2.3924  -0.82388 ] rad for initial configuration and [-

0.62937  1.419  -1.5403 ] rad for final configuration. Figure 10b 

shows the joint angle trajectories of this wrong initial and final 

joint angles configuration. 
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(b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Example of wrong compostition of the initial and final 

configurations. The collision-free trajectories are failure to be obtained. 

B. Case II 

The second Bezier curve as the tracked curve is 𝜀-like 

geometry. For first simulation of the second case, the initial and 

final joint angles used are [-0.84564  1.6821 -0.82723] rad and 

[0.43791 0.69092 -1.1208], respectively. Figure 11a shows the 

results of the motion envelope and Fig. 11b presents the joint 

angle trajectories of this motion. The polynomial coefficient 

obtained is 0.04138.  
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Figure 11.  Case II. (a). Motion envelope (b). Joint angle trajectories 

C. Error in position when s2 solution is complex number 

Next investigation is the effect of the imaginary number in 

(4).  Case II is used to investigate the effect of the imaginary 

number in (4).  

Figure 12 shows the motion envelope of wrong composition 

of initial and final configuration. In this case, the initial 

configuration used is [-0.32922  1.2652 4.5393] rad while the 

final configuration is [0.047179 1.0335 -0.42988] rad. Figure 

13 shows the detail of the end-effector position error. The joint 

angle trajectories of this case can be viewed in Fig. 14. It can 

be observed that at the position errors, the solutions of (4) 

contain the imaginary numbers.  

Figures 15a and 15b are the motion envelope and the joint 

angle trajectories of the second example of wrong initial and 

final postures that yield the position errors. For this second 

example, the initial configuration is [-0.95493 1.622 -0.366625] 

rad and the final configuration is [0.080225 1.0365 5.7272] rad. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Position errors due to wrong composition of initial and final joint 

angles in case II.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Detail of position errors 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.  Imaginary values in joint angle trajectories  
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Another example of position errors due to wrong composition of 

initial and final joint angles in case II.  

The self-motion behavior when the arm robot manipulator 

tracks the predefined path has been investigated. Modeling the 

joint angle in the form of polynomial function is very 

interesting approach because the polynomial function has many 

advantages. It is simple, smooth, and guarantees the continuity 

till (n-1)th derivative for polynomial function degree n. Some 

composition of initial and final joint angles can track the curve 

perfectly, but it is also possible that the composition of initial 

and final joint angles yields the set of the solutions of (4) 

contain the imaginary numbers. When these imaginary values 

involved, it is a sign that there are position errors at the 

corresponding theta global. Wrong composition of initial and 

final joint angle can lead the unfeasible motion where there are 

position errors experienced.  

This result is very useful information for practical 

consideration. When s2 trajectories of (4) contain complex 

number, there will be position errors in the part of imaginary 

numbers present.  The position of initial and final joint angle 

can be reconstructed to achieve the proper composition of the 

initial and final joint angles. In this case, the self-motion 

planning needs to be executed to place the initial configuration 

to the correct position. Using the complex number in the motion 

of the robotic arm has also been investigated firstly by [19].  For 

the future research, there is possibility that the complex number 

analysis cannot be ignored in the motion planning of robotic 

arm.  Further investigation in this issue needs to be conducted.  

VI. CONCLUSION 

The self-motion behaviors of 3-DOF planar series 

manipulator to solve the problem of the continuous path 

planning had been investigated.  The theta global continuous 

function, which was developed from the 3-DOF planar robot 

closed form of the IK solution at one instantaneous point, had 

many possible motion envelopes to track the predefined end-

effector path. The GA had succeeded to solve the continuous 

path planning where the manipulator tracked the desired path 

and achieved the optimal motion. When the solutions of the 

theta global contained the imaginary number, the repairing of 

the theta global trajectories was necessary by considering the 

self-motion capability of the redundant manipulator. Further 

investigation in using the complex number in analyzing the arm 

robot motion was very fascinating future research to be 

conducted. 
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